COAL COMBUSTION RESIDUAL RULE GROUNDWATER MONITORING SYSTEM CERTIFICATION

MONTICELLO STEAM ELECTRIC STATION ASH PONDS MOUNT PLEASANT, TEXAS

OCTOBER 16, 2017

Prepared For:

Luminant Generation Company, LLC 6555 Sierra Drive Irving, TX 75039

Prepared By:

Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive, Suite 4004 Round Rock, Texas 78664 Texas Engineering Firm No. 4760

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Pastor, Behling & Wheeler, LLC under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the groundwater monitoring system installed at the referenced facility has been designed and constructed to meet the requirements of Section 257.91 of the CCR Rule.

Patrick J. Behling, P.E. / Principal Engineer PASTOR, BEHLING & WHEELER, LLC

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATIONi	i
TABLE OF CONTENTSii	i
LIST OF TABLES	1
LIST OF FIGURESiv	1
LIST OF APPENDICESiv	/
1.0 INTRODUCTION	l
 1.1 Description of the Ash Pond Area 1.2 CCR Unit Groundwater Monitoring System Requirements 	
2.0 GROUNDWATER MONITORING SYSTEM EVALUATION	3
 2.1 Ash Pond Groundwater Monitoring System. 2.2 Local Geology and Hydrogeology. 2.3 Groundwater Potentiometric Surface Elevations. 2.4 Uppermost Aquifer Hydraulic Conductivity Testing	3 3 1 1
3.0 REFERENCES	5

LIST OF TABLES

Table No.	Title
1	Well Construction Summary
2	Groundwater Elevation Summary
3	Summary of Aquifer Test Results

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Detailed Site Plan
3	Cross Section Location Map
4	Geologic Cross Section A-A'
5	Geologic Cross Section B-B'

LIST OF APPENDICES

Appendix	<u>Title</u>
А	CCR Monitoring Well Logs
В	Photographs of CCR Groundwater Monitoring Wells
С	Groundwater Potentiometric Surface Maps
D	Aquifer Test Data

October 16, 2017

1.0 INTRODUCTION

Luminant Generation Company, LLC (Luminant) operates the Monticello Steam Electric Station (MOSES) located approximately six miles southwest of Mount Pleasant, Titus County, Texas (Figure 1). The three power generation units at the MOSES burn lignite and Powder River Basin coal. Coal Combustion Residuals (CCRs) including fly ash, bottom ash, and scrubber sludge are generated as part of MOSES unit operations. The CCRs are currently stored, treated, and disposed of in surface impoundments on-site, or at other Luminant facilities. Three surface impoundments are located within the MOSES operations, the West Ash Settling Pond, the Southwest Ash Settling Pond, and Northeast Ash Water Retention Pond (Ash Ponds). These ponds are collectively referred to as the Ash Ponds and are evaluated as one CCR unit. The Ash Ponds meet the definition of a CCR surface impoundment and are subject to groundwater monitoring system requirements of the CCR Rule.

The CCR Rule (40 CFR 257 Subpart D - *Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments*) has been promulgated by the EPA to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. The final CCR Rule was published in the Federal Register on April 17, 2015. The effective date of the CCR Rule was October 19, 2015.

The CCR Rule establishes national minimum criteria for existing and new CCR landfills, existing and new CCR surface impoundments, and lateral expansions to landfills/impoundments. Pastor, Behling & Wheeler, LLC (PBW) was retained by Luminant to evaluate and certify that the groundwater monitoring system at the Site has been designed and constructed to meet the requirements of Section 257.91 of the CCR Rule.

1.1 Description of the Ash Pond Area

Bottom ash is sluiced to the NE and West Ash Ponds, and the SW Ash Pond is used for overflow from the other two ponds. In addition to the sluiced ash, overflow from the dewatering bins is also sent to these ponds. Based on drawings provided by Luminant, these ponds have compacted clay liners consisting of three feet of clay soil, and are considered existing lined surface impoundments under the CCR Rule. The clay soil is covered by a four-inch concrete revetment.

1.2 CCR Unit Groundwater Monitoring System Requirements

Section 257.91 of the CCR Rule indicates that existing CCR landfills and surface impoundments be provided with a groundwater monitoring system that consists of sufficient wells, installed at appropriate location and depths, to yield groundwater samples from the uppermost aquifer that meet the following criteria:

- Accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit; and
- Accurately represent the quality of groundwater passing the waste boundary of the CCR unit. The downgradient monitoring system must be installed at the waste boundary to ensure detection of groundwater contamination in the uppermost aquifer. All potential contaminant pathways must be monitored.

The specific configuration of the groundwater monitoring system must be determined based on sitespecific technical information that must include aquifer thickness, groundwater flow rate, groundwater flow direction (including seasonal and temporal fluctuation in groundwater flow), saturated and unsaturated geologic units and fill materials that overly the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the upmost aquifer, including, but not limited to, thickness, stratigraphy, lithology, hydraulic conductivities, porosities, and effective porosities.

At a minimum, the monitoring system must consist of at least one upgradient and three downgradient monitoring wells, and any additional monitoring wells necessary to accurately represent the quality of the background groundwater that has not been affected by leakage from the CCR unit and the quality of groundwater passing the waste boundary of the CCR unit. Multi-unit groundwater monitoring systems are allowed but must be equally as capable of detecting monitored constituents at the waste boundary of a CCR unit as individual groundwater monitoring wells.

Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well borehole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of groundwater samples. The annular space above the sampling depth must be sealed to prevent contamination of samples and the groundwater. There must be documentation in the operating record of the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices. The qualified engineer must have access to and must review this documentation as part of the groundwater monitoring system certification.

2.0 GROUNDWATER MONITORING SYSTEM EVALUATION

2.1 Ash Pond Groundwater Monitoring System

The CCR groundwater monitoring well system at the Ash Ponds consists of seven monitoring wells (W-29, W-30, W-31, W-32, W-33, W-34, and W-35) that are each screened in the uppermost aquifer at the Site. The locations of the CCR monitoring wells are shown on Figure 2. Well construction information and survey data for the CCR wells are summarized in Table 1, CCR monitoring well logs are presented in Appendix A, and photographs of the CCR wells are presented in Appendix B.

2.2 Local Geology and Hydrogeology

The Ash Ponds are located in the outcrop area of the Eocene-aged Wilcox Group (Barnes, 1966). PBW reviewed soil boring logs, monitoring well completion documentation, and historical reports to describe the geologic and hydrogeologic conditions in the Ash Pond area. Geologic cross sections were constructed using these data. The locations of the cross sections are shown on Figure 3 and the cross sections are shown on Figures 4 and 5.

The geology of the Ash Pond area consists of an upper clay and silt unit that extends from ground surface to about 5 to 25 feet below ground surface (bgs). The upper clay and silt unit is underlain by an approximately 20-foot to 40-foot thick unit of silty sand, which is underlain by a lower clay unit that ranged in thickness from less than 5 feet to about 15 feet. The uppermost aquifer at the Site occurs under unconfined to semi-confined conditions within the intermediate silty sand unit.

2.3 Groundwater Potentiometric Surface Elevations

Eight background groundwater monitoring events were performed using the Ash Pond CCR monitoring well system from October 2015 to December 2016. Static water levels measured during the background monitoring period indicated water elevations ranging from 354.80 feet above mean sea level (amsl) to 367.20 feet amsl, and depths to water ranging from 11.33 feet bgs to 25.74 feet bgs (Table 2). Groundwater potentiometric surface maps based on gauging data collected during the background monitoring period are presented in Appendix C.

Groundwater elevations were generally highest on the east side of the Ash Ponds, with an inferred groundwater flow direction to the west toward Lake Monticello. Based on the inferred direction of

Upgradient Wells	Downgradient Wells
W-31	W-29
W-32	W-30
W-33	W-34
	W-35

groundwater flow, the location of each CCR monitoring well relative to the Ash Ponds is as follows:

2.4 Uppermost Aquifer Hydraulic Conductivity Testing

PBW performed slug tests at monitoring wells W-32, W-33, and W-35 on October 5, 2015 to evaluate hydraulic properties of the uppermost aquifer at the site. Slug test data and time-head change plots used to calculate hydraulic conductivities and transmissivities of the uppermost aquifer are provided in Appendix D. A summary of these hydraulic properties is presented in Table 3. The average hydraulic conductivities for the wells ranged from 6.58×10^{-4} cm/sec (well W-35) to 8.42×10^{-3} cm/sec (well W-33), with a geometric mean for the test wells of 2.51×10^{-3} cm/sec.

2.5 Conclusions

The CCR groundwater monitoring well system at the Ash Ponds complies with Section 257.91 of the CCR Rule. This conclusion is supported by the following as described in detail in previous sections of this report:

- Seven monitoring wells are included in the CCR groundwater monitoring system three upgradient monitoring wells and four downgradient monitoring wells.
- Each monitoring well is screened in the uppermost aquifer at the site. Samples collected from upgradient monitoring wells will be representative of the quality of background groundwater that has not been affected by leakage from the CCR units. Samples collected from downgradient wells will ensure detection of groundwater contamination in the uppermost aquifer from the CCR units.
- The monitoring wells are constructed with appropriate well casing to maintain the integrity of the monitoring well borehole and with slotted well screens to enable collection of groundwater samples. In addition, the annular space above the well screen is appropriately sealed to prevent contamination of groundwater samples from surface sources.
- Appropriate documentation exists concerning the design, installation, and development of the monitoring wells.

3.0 **REFERENCES**

Barnes, Virgil E., 1966. Geologic Atlas of Texas, Texarkana Sheet. Texas Bureau of Economic Geology.

Tables

TABLE 1

WELL CONSTRUCTION SUMMARY MONTICELLO STEAM ELECTRIC STATION ASH PONDS

				Screen	Top of		Casing
	Date			Interval	Pad Elev.	TOC Elev.	Diameter
Well ID	Installed	Northing	Easting	(feet bgs)	(feet amsl)	(feet amsl)	(inches)
W-29	8/26/2015	527058	2754498	27-37	374.94	377.59	2
W-30	8/26/2015	527358	2755059	32-42	373.53	376.95	2
W-31	8/25/2015	526969	2755498	33-43	372.99	376.33	2
W-32	8/25/2015	526491	2755763	23-33	375.41	378.96	2
W-33	8/25/2015	525819	2755454	20-30	383.69	387.16	2
W-34	8/27/2015	525962	2754790	17-27	375.84	379.16	2
W-35	8/27/2015	526365	2754542	25-35	377.86	381.15	2

Notes:

1. Abbreviations: bgs - below ground surface; amsl - above mean sea level; TOC - top of casing.

TABLE 2 GROUNDWATER ELEVATION SUMMARY MONTICELLO STEAM ELECTRIC STATION ASH PONDS

Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft btoc)	Water Elevation (ft amsl)
W-29	377.59	10/15/15	20.97	356.62
11 25	577.55	12/07/15	18.46	359.13
		02/22/16	20.34	357.25
		04/04/16	20.13	357.46
		06/06/16	20.01	357.58
		08/08/16	20.72	356.87
		10/12/16	20.51	357.08
		12/29/16	20.93	356.66
W-30	376.95	10/15/15	19.49	357.46
W 50	570.75	12/07/15	14.91	362.04
		02/22/16	17.19	359.76
		04/04/16	16.04	360.91
		06/06/16	14.77	362.18
		08/08/16	14.98	361.97
		10/12/16	17.62	359.33
		12/29/16	16.14	360.81
W-31	376.33	10/15/15	14.97	361.36
,, 51	570.55	12/07/15	13.12	363.21
		02/22/16	12.97	363.36
		04/04/16	12.74	363.59
		06/06/16	11.33	365.00
		08/08/16	13.56	362.77
		10/12/16	13.12	363.21
		12/29/16	12.98	363.35
W-32	378.96	10/15/15	15.46	363.50
11 32	370.90	12/07/15	13.99	364.97
		02/22/16	13.49	365.47
		04/04/16	13.26	365.70
	×	06/06/16	11.76	367.20
		08/08/16	14.31	364.65
		10/12/16	13.72	365.24
		12/29/16	13.77	365.19
W-33	387.16	10/15/15	25.74	361.42
		12/07/15	23.54	363.62
		02/22/16	23.77	363.39
		04/04/16	23.01	364.15
		06/06/16	21.94	365.22
		08/08/16	23.78	363.38
		10/12/16	23.61	363.55
		12/29/16	24.25	362.91
W-34	379.16	10/15/15	24.36	354.80
		12/07/15	23.03	356.13
		02/22/16	22.51	356.65
		04/04/16	22.68	356.48
		06/06/16	24.09	355.07
		08/08/16	22.22	356.94
		10/12/16	22.58	356.58
		12/29/16	23.04	356.12

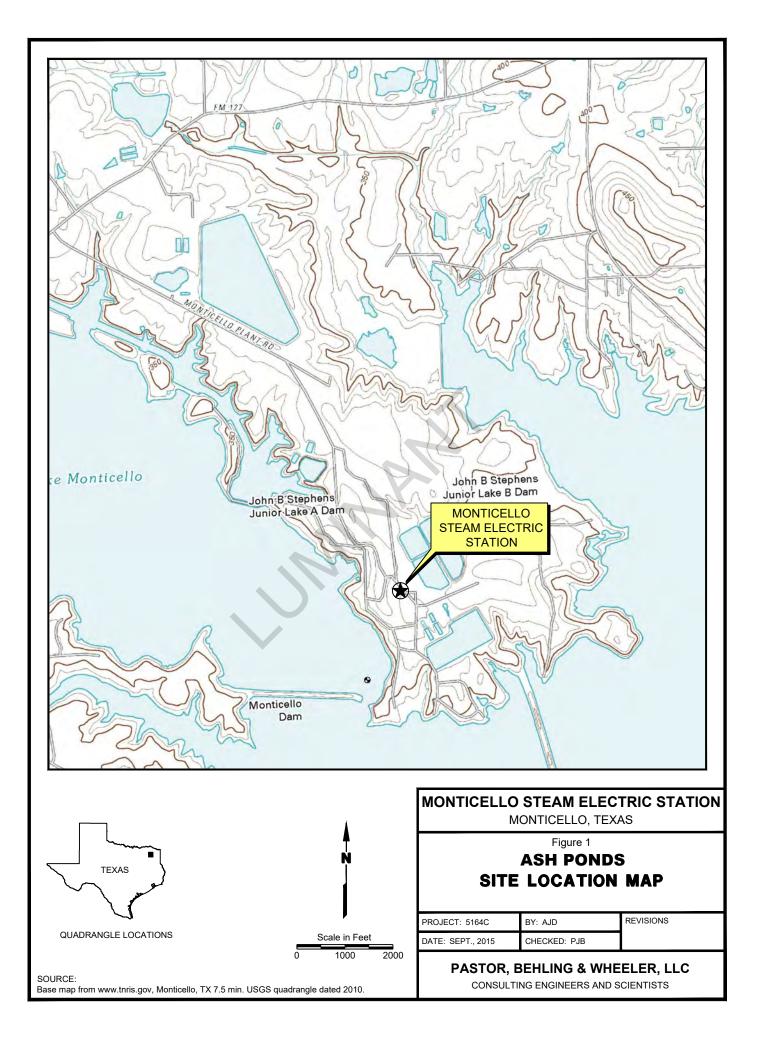
TABLE 2GROUNDWATER ELEVATION SUMMARYMONTICELLO STEAM ELECTRIC STATION ASH PONDS

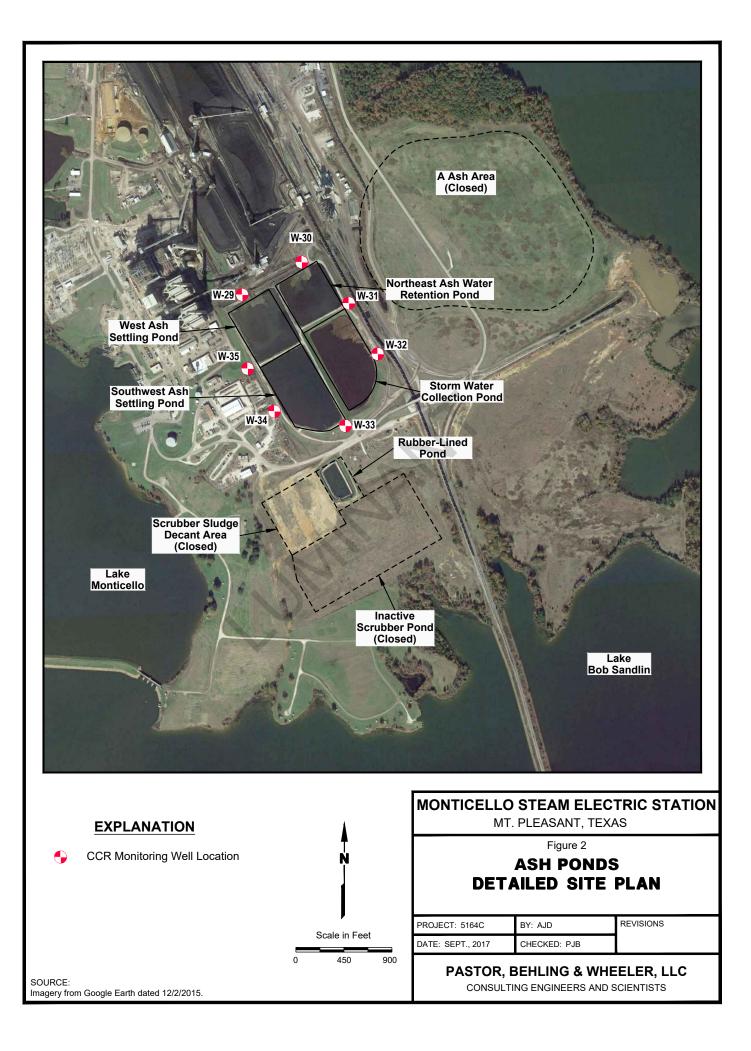
Well ID	TOC Elevation (ft amsl)	Date	Depth to Water (ft btoc)	Water Elevation (ft amsl)
W-35	381.15	10/15/15	24.11	357.04
		12/07/15	22.33	358.82
		02/22/16	23.17	357.98
		04/04/16	22.93	358.22
		06/06/16	22.16	358.99
		08/08/16	23.47	357.68
		10/12/16	23.31	357.84
		12/29/16	23.65	357.50

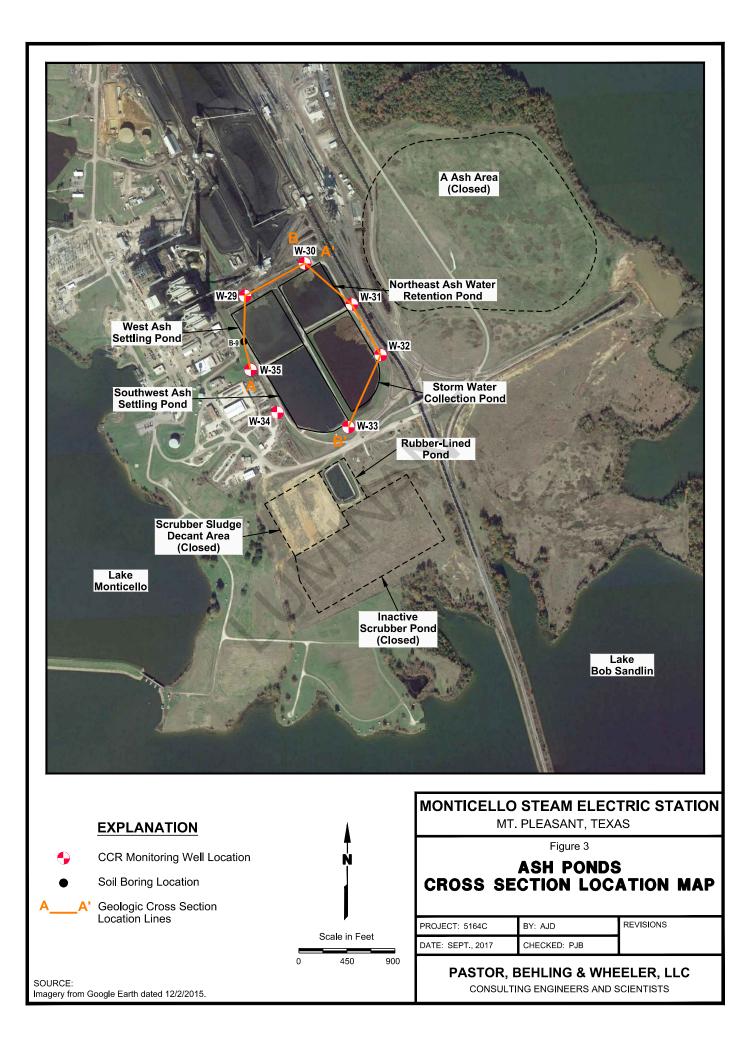
Notes:

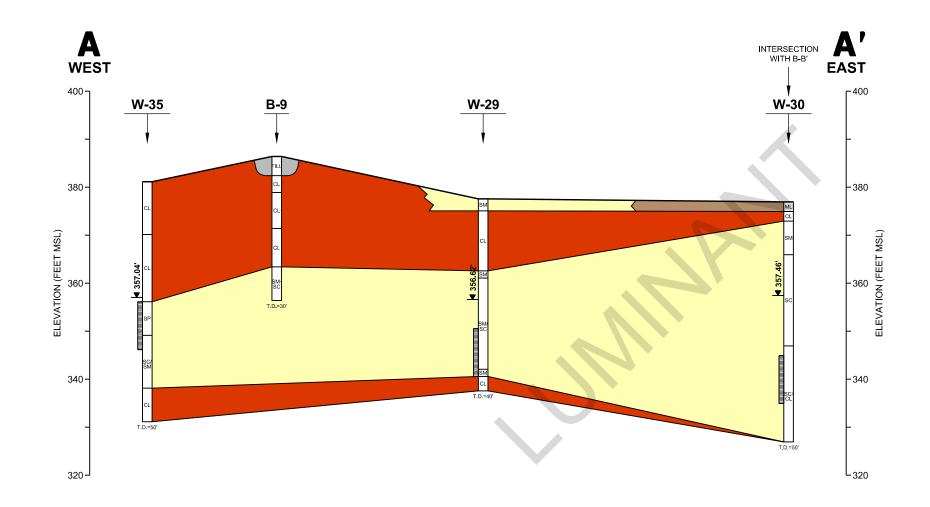
1. Abbreviations: TOC - top of casing; ft - feet; amsl - above mean sea level.

UNINAL UNIN

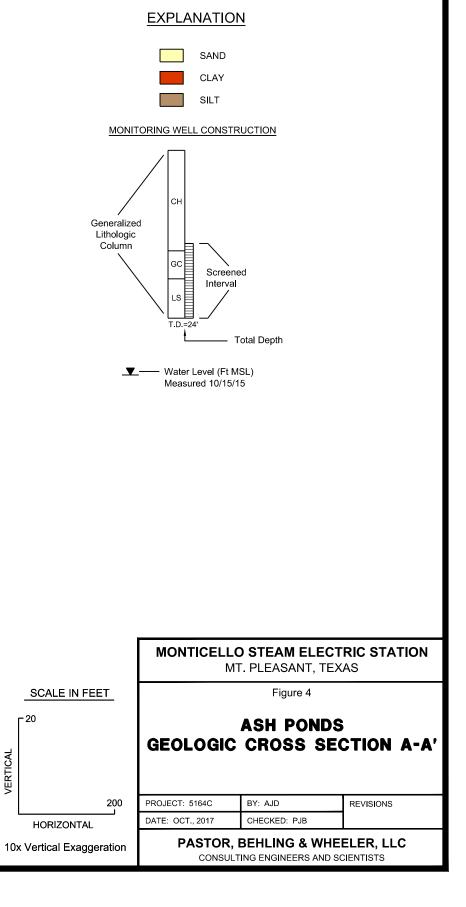

SUMMARY OF AQUIFER TEST RESULTS MONTICELLO STEAM ELECTRIC STATION ASH PONDS

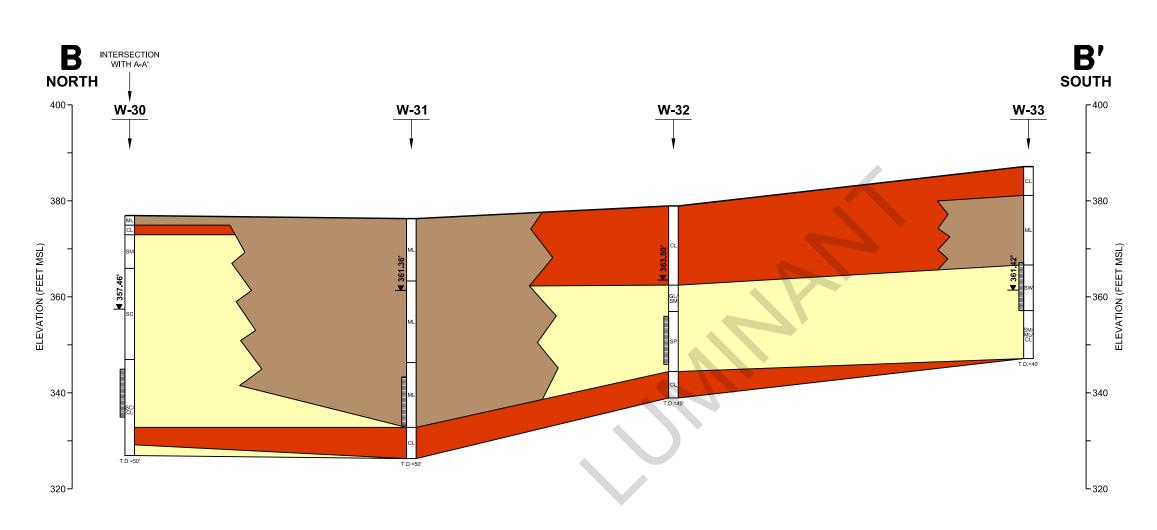

					Results	
Well ID	Test Type	Aquifer Type	Analysis Method	Saturated Thickness (feet)	T (cm²/sec)	K (cm/sec)
W-32	Slug-In	Unconfined to Semi-Confined	Bouwer-Rice	18	1.95E+00	3.56E-03
W-32	Slug-Out	Unconfined to Semi-Confined	Bouwer-Rice	18	1.20E+00	2.19E-03
				MEAN	1.58E+00	2.87E-03
W-33	Slug-Out ¹	Unconfined	Bouwer-Rice	8	1.97E+00	8.42E-03
W-35	Slug-In	Unconfined to Semi-Confined	Bouwer-Rice	18	4.08E-01	7.43E-04
W-35	Slug-Out	Unconfined to Semi-Confined	Bouwer-Rice	18	3.14E-01	5.72E-04
	-			MEAN	3.61E-01	6.58E-04
			MEAN I	FOR ALL TESTS	1.04E+00	2.51E-03

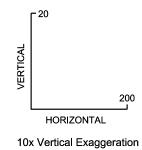

Notes:

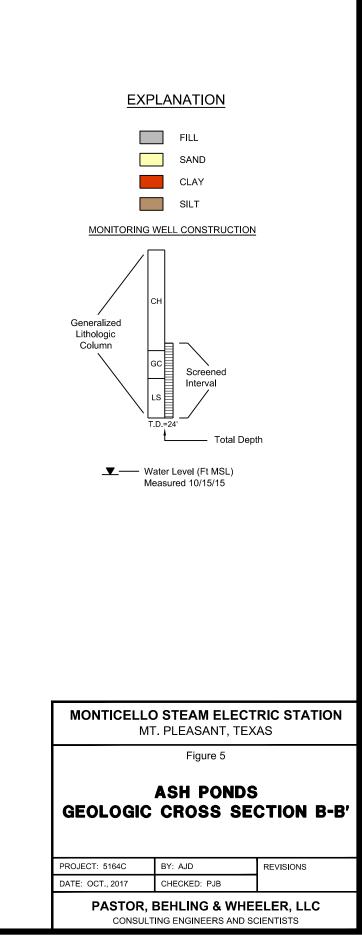

¹ - A slug-in test was not performed because the static water level was below top of screen.

Figures

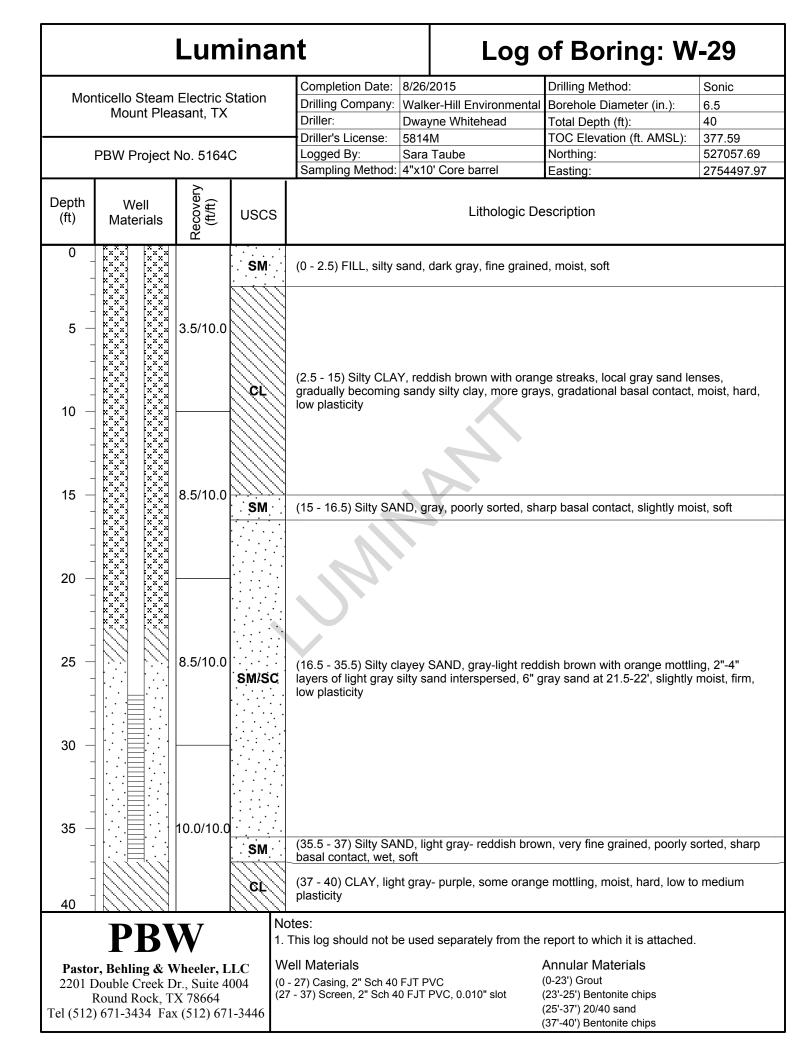




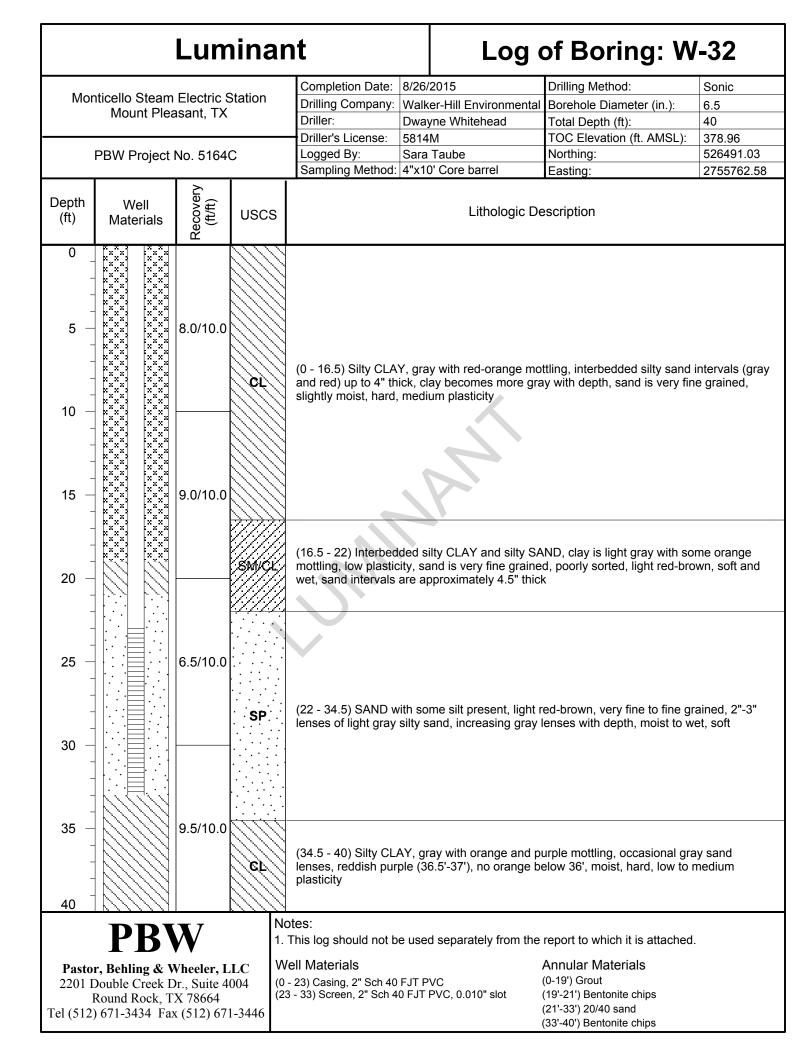


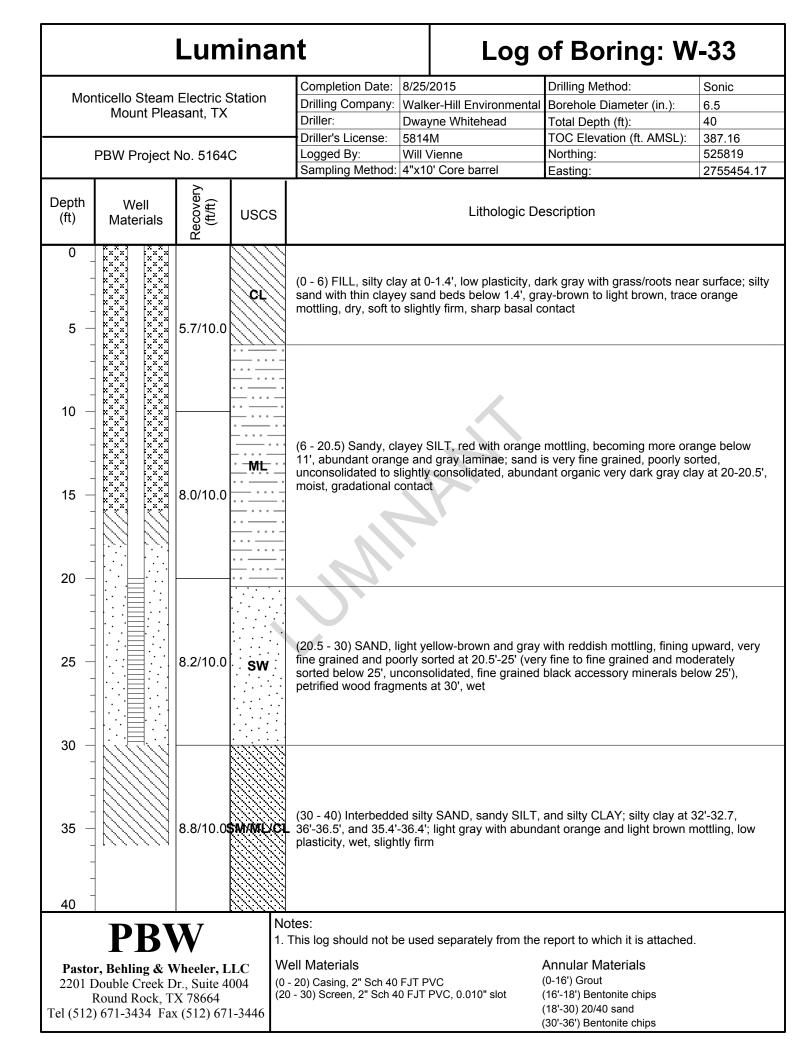

г20 VERTICAL

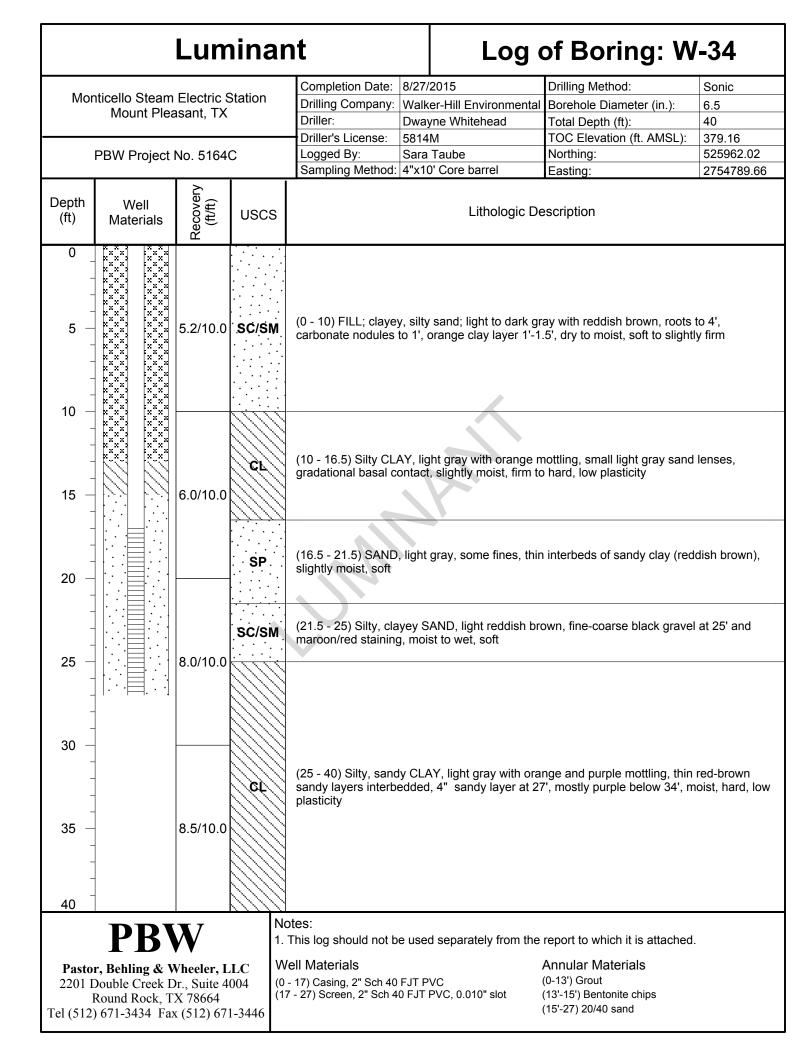
SCALE IN FEET



Appendix A


CCR Monitoring Well Logs


Ń



		Lum	ninar	זנ	Log	of Boring: W	-30
				Completion Date: 8/2	26/2015	Drilling Method:	Sonic
Mor	nticello Stean		Station		alker-Hill Environmenta	Borehole Diameter (in.):	6.5
	Mount Ple	easant, TX			vayne Whitehead	Total Depth (ft):	50
					14M	TOC Elevation (ft. AMSL):	376.95
	PBW Project	No 5164	C		ira Taube	Northing:	527358.15
			0	Sampling Method: 4">		Easting:	2755059.04
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS		Lithologic D	escription	
0_			<u></u> ML			, carbonate nodules, some or	ange clayey
_			127	(2 - 4) Silty sandy CLA	y with depth, light gray Y. orange-light grav mo	sand lens at 2', dry, hard ottling, sharp basal contact, dr	v. hard. low
-			100	plasticity			
5 —		7.5/10.0					
-							
_			ŚŚŴ	(4 - 11) Silty SAND, ve	ry fine grained, light gra	ay with some red-orange clay	lesnes
_			<u>.</u>	beginning at 9', dry, so	π		
10 —							
-			· · · · · ·				
_							
-							
15 —		7.0/10.0	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$				
-							
_			· · · · · ·				
_			• • • • •	(11 - 30) Clayev SAND) with silt, light grav with	orange and yellow mottling,	sandier with
20 —			. sc	depth and less cohesive, minimal clay below 18', very sandy to 22', becomes clayey a gray again (reddish brown sand), thin light gray sand layers interbedded, very fine			
-				gray again (reddish bro	own sand), thin light gra	y sand layers interbedded, ve	ery fine
_				grained, some purple of	clay mottling around 27	5', dry to slightly moist, soft to	o firm
-							
25 —		9.5/10.0					
-							
_							
-	$\{N,N\}$						
30 —	[[안기 [[안기]		kinni k				
-] [L]						
_	· ∶. <u> </u>]·``·		10000	*			
-	:• ⊨╡.::						
35 —	∶:⊟:·	9.5/10.0					
-] : .;⊟∃: : [UNN S				
-	·∶:≣ :`·			(30 - 50) Interbedded o	layey SAND and silty (CLAY, light gray with purple or	rorange
-	{ :.:]]`_]		141112	mottling in clay, sand t	ypically uniform gray, m	nostly gray and sandy before	36', below 40'
40 —	.∙.⊨⊒∶∶		SC/CL	areas of gray and purp	le mottling in clayier lay	vers, gray with red-orange mo	ttling in
-] .*.:曰:.'		COULD &	sandier layers (40'-42', soft to firm, none to lov		ayier with depth from 42' to 47	r.5', moist,
_	-				v plasicity		
-	-						
45 —	1	10.0/10.0	100000				
-			600000				
_	-						
-	-						
50 —	J		<u> </u>				
			-				
	DD	X 7		otes:	and concretely from the		
	PB	VV	1.	i his log should not be u	sed separately from the	e report to which it is attached	
Pasto	r, Behling & `	Wheeler, L	IC W	ell Materials		Annular Materials	
	Double Creek		004 (0	- 32) Casing, 2" Sch 40 FJ1	T PVC	(0-28') Grout	
	Round Rock, T		(32	2 - 42) Screen, 2" Sch 40 F.	JT PVC, 0.010" slot	(28'-30') Bentonite chips	
						(30'-42') 20/40 sand	

		Lum	nina	nt	Log	of Boring: W	/-31
Monticello Steam Electric Station Mount Pleasant, TX Drilling Company: Walker-Hill Environmental Borehole Diameter (in.): 6. Driller: Dwayne Whitehead Total Depth (ft): 50 Driller's License: 5814M TOC Elevation (ft. AMSL): 37 PBW Project No. 5164C Logged By: Sara Taube Northing: 52							Sonic 6.5 50 376.33 526968.69 2755497.73
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS		Lithologic De	Easting: scription	2133431.13
0 5 - - - - - - - - - - - - - - - -		7.9/10.0		orange mottling 4'-6.5		ate nodules to 4', clayier witl e rock fragments 0-4', sharp n, none to low plasticity	
15 -		6.0/10.0			K		
20 – - 25 –		9.5/10.0	· · · · · · · · · · · · · · · · · · ·	interbedded silty sand	d and clayey silt: sandier b with orange and gray mott	red mottling, local gray sanc prown-dark brown with red m ling (23.5'- 27'), gray and sa	ottling (20'-
30		10.0/10.0		orange mottling- appe	ears bioturbated with inter	e mottling, fine grained sand spersed very fine to fine grai less orange mottling, moist	
40 		10.0/10.0	C.			ty sands, gray with purple ar ed, light gray, moist, hard, lo	
2201 I	PBV or, Behling & V Double Creek E Round Rock, T) 671-3434 Fa:	Vheeler, L Dr., Suite 4 X 78664	LC 004	lotes: . This log should not be Vell Materials 0 - 33) Casing, 2" Sch 40 F 33 - 43) Screen, 2" Sch 40 J	JT PVC (FJT PVC, 0.010" slot (report to which it is attached Annular Materials 0-29') Grout 29'-31') Bentonite chips 31'-43) 20/40 sand	

		Lum	nina	nt	Log	of Boring: W	/-35
Мо	nticello Steam Mount Plea			Drilling Company: Walk	yne Whitehead	Drilling Method: Borehole Diameter (in.): Total Depth (ft): TOC Elevation (ft. AMSL):	Sonic 6.5 50 381.15
	PBW Project	No. 5164	Northing: Easting:	526364.73 2754541.91			
Depth (ft)	Well Materials	Recovery (ft/ft)	USCS		Lithologic De	escription	
0 - - 5 - - - - - - - - - - - - - - - - -		4.1/10.0				iable, dry; becomes silt at 1. ey silty sand (2.5'-11'), dark	
15 — 20 —		4.9/10.0	CL	(11 - 25) Silty, sandy CL to 20', sandier to 25', sha	AY, light gray with red arp basal contact, sligh	and orange mottling, more c ntly moist, firm, low plasticity	lay with depth
25 –		6.8/10.0	SP	(25 - 32) SAND, some fir gray, moist to wet, soft	nes, very fine to fine g	rained, light brown-reddish b	rown-light
30 -		8.3/10.0	SC/SM		are reddish brown-ligh	own with reddish brown, san t brown (32'-35'), light gray (3 jular gravel (40'-43'), all grad	35'-37'),
40		7.5/10.0	64	(43 - 50) Silty CLAY, ligh intermittent 2" light gray s		orange mottling, some very ard, low plasticity	fine sand,
Pasto 2201 1	PB r, Behling & V Double Creek I Round Rock, T () 671-3434 Fa:	Wheeler, L Dr., Suite 4 'X 78664	LC V 004 ((Notes: . This log should not be use Well Materials 0 - 25) Casing, 2" Sch 40 FJT F 25 - 35) Screen, 2" Sch 40 FJT	PVC PVC, 0.010" slot	report to which it is attached Annular Materials (0-21') Grout (21'-23') Bentonite chips (23'-35) 20/40 sand	l.

Appendix B

Photographs of CCR Groundwater Monitoring Wells

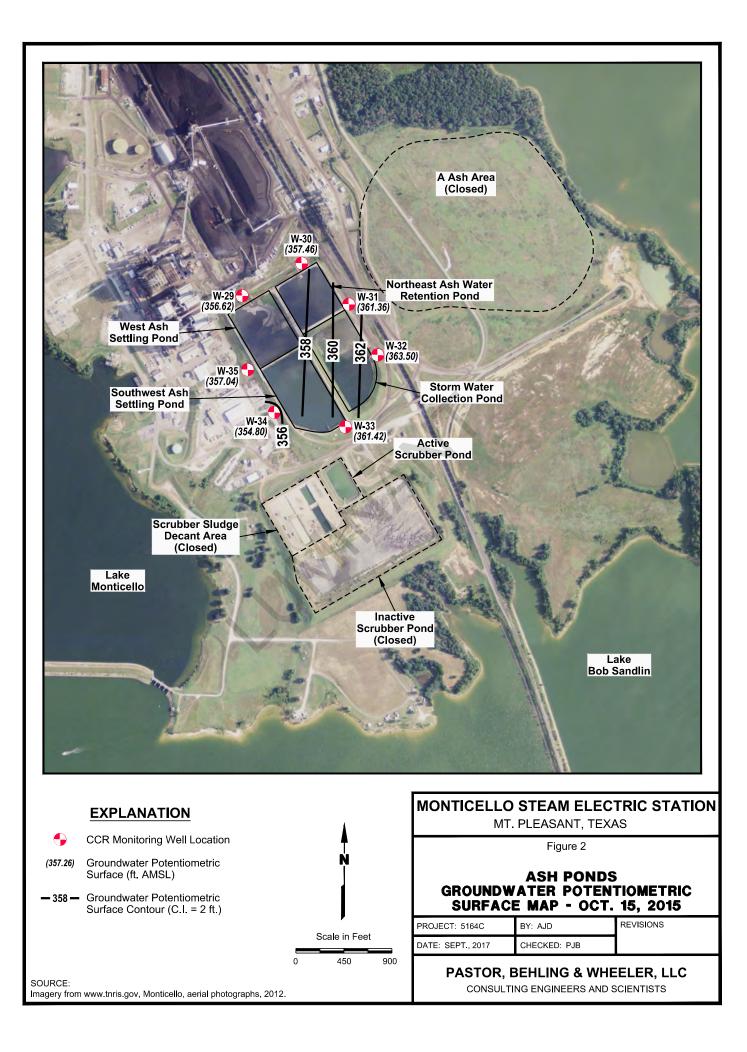
Photograph 1: W-29

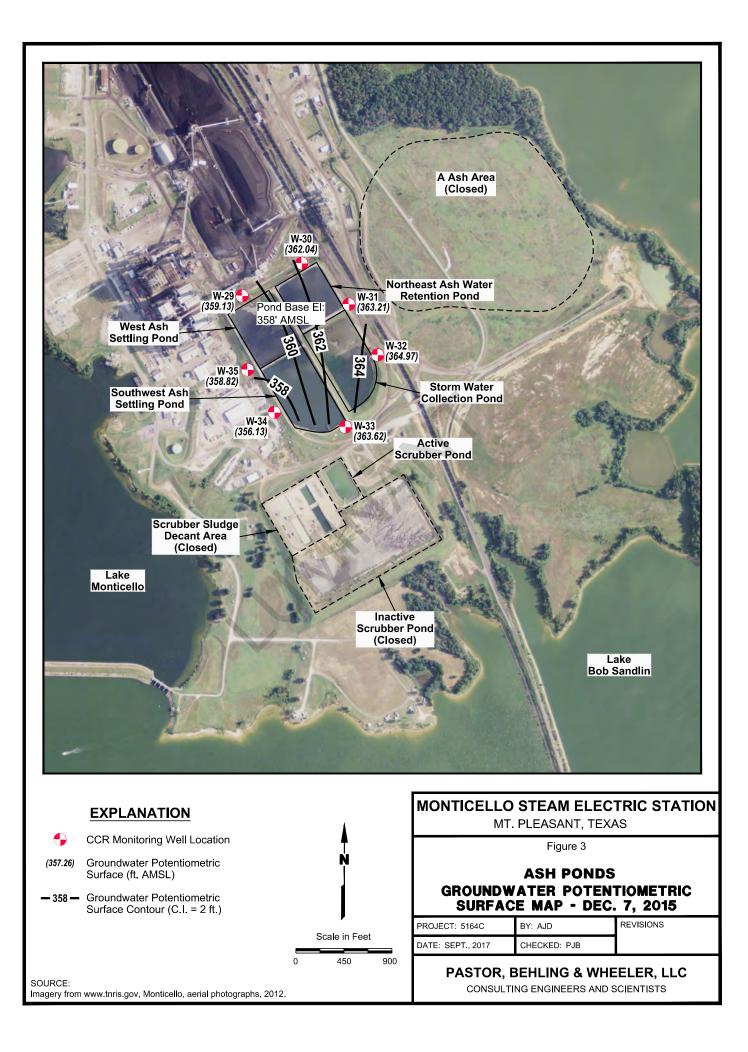
Photograph 2: W-30

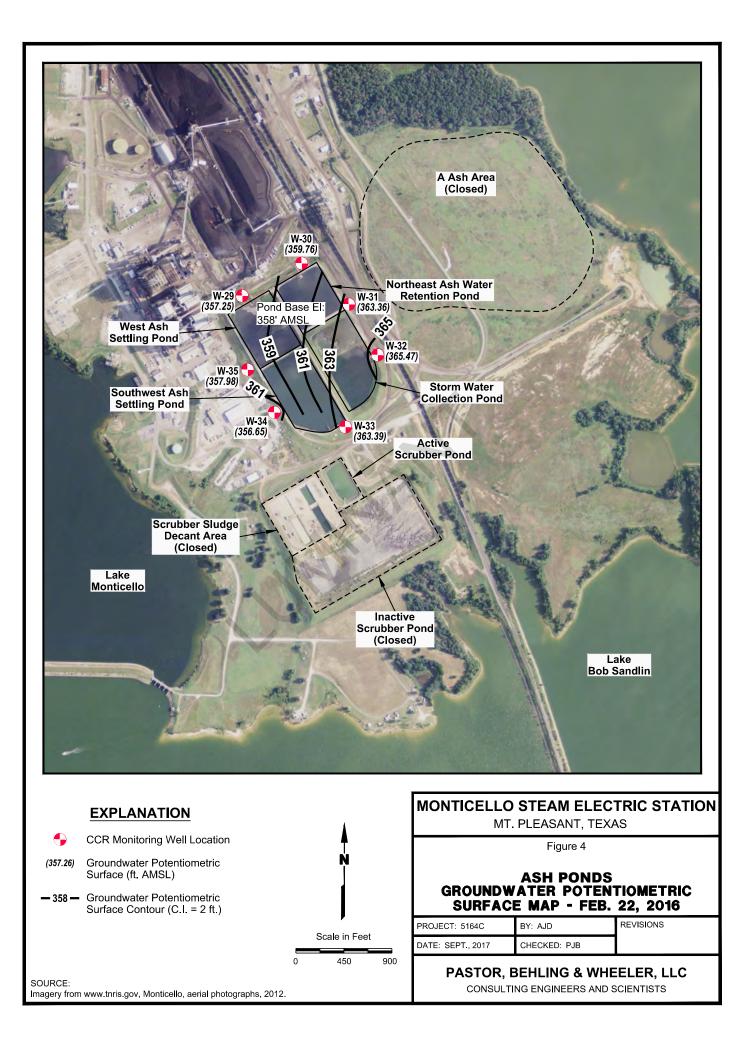
Photograph 3: W-31

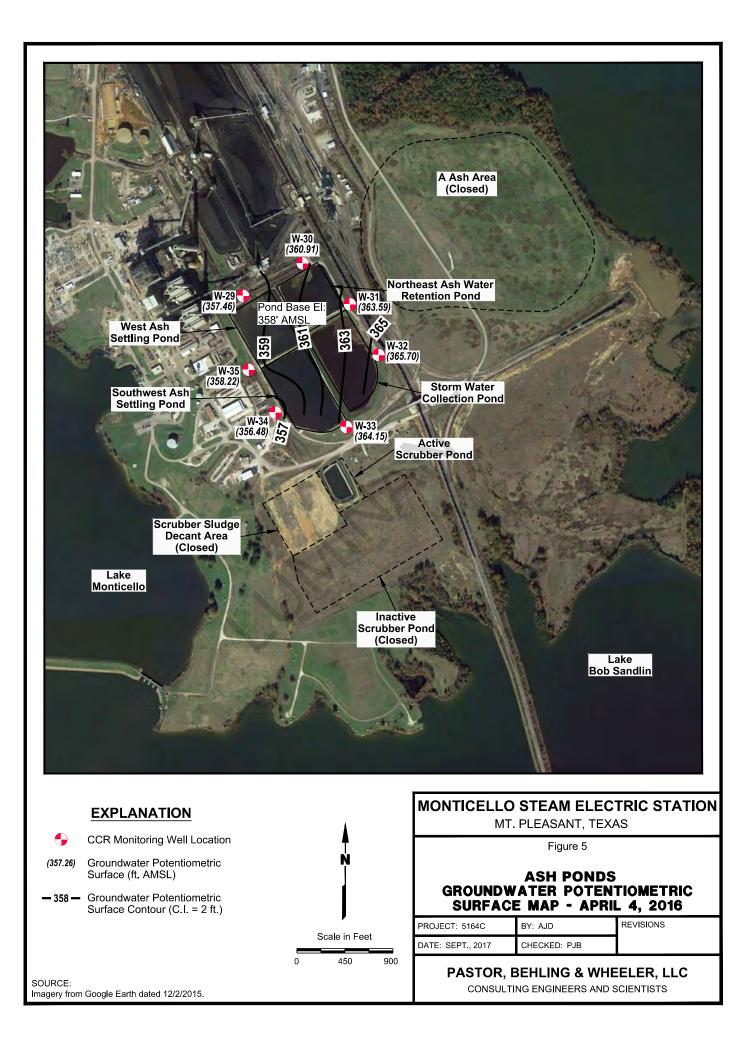
Photograph 4: W-32

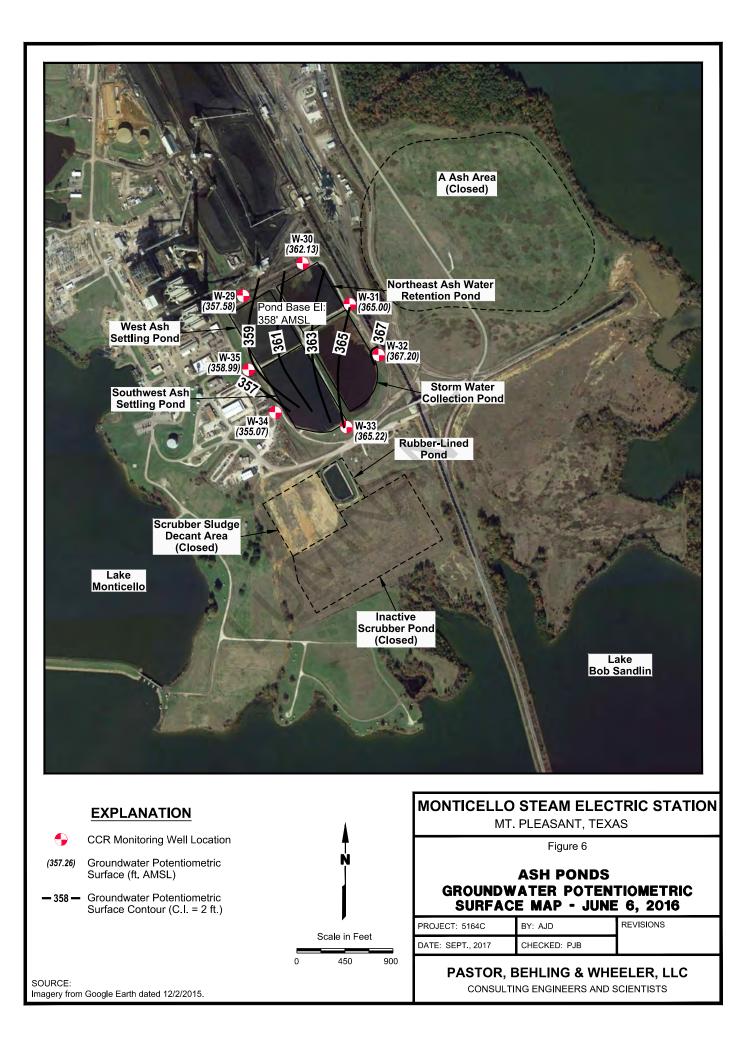
Photograph 5: W-33

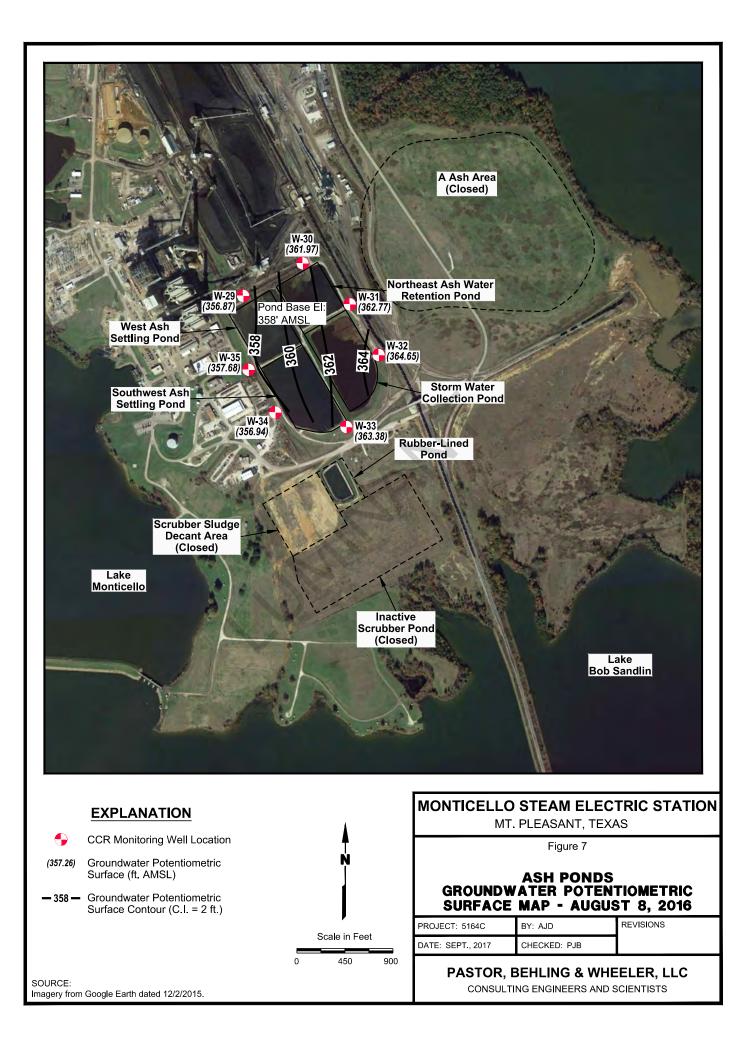

Photograph 6: W-34

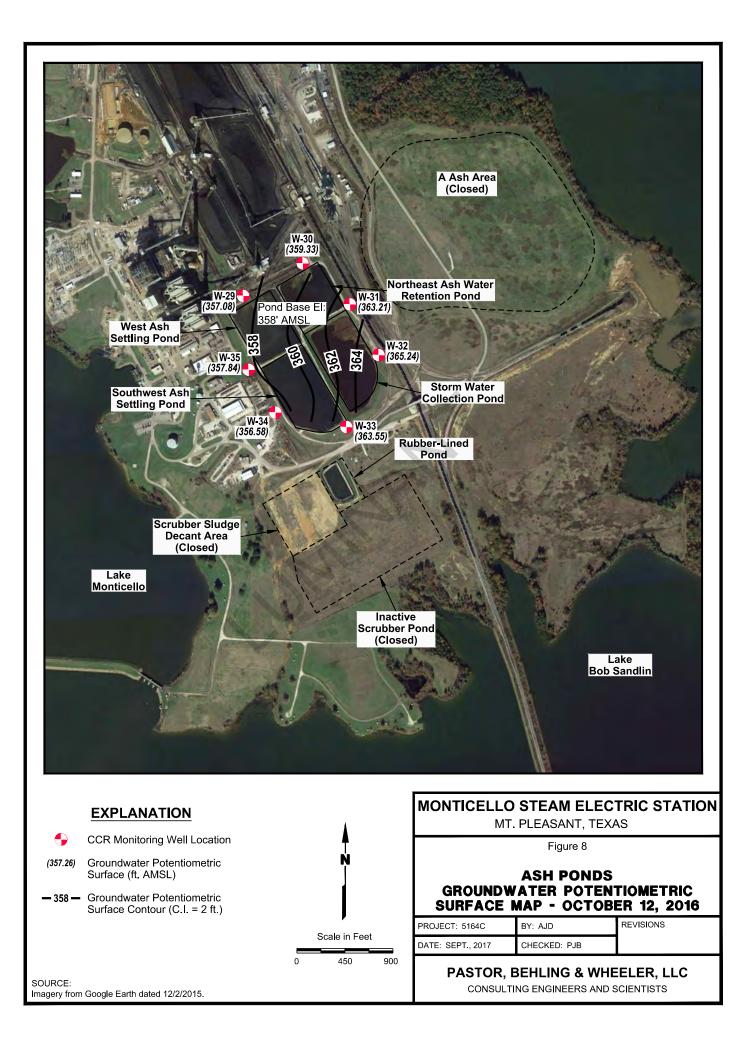


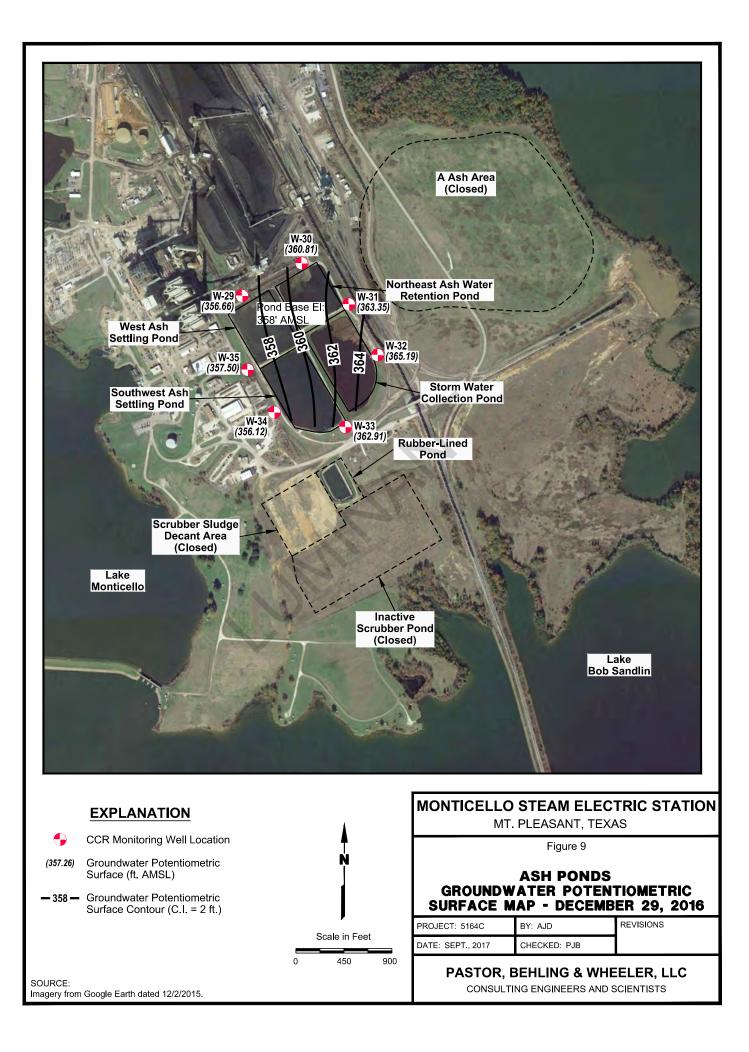

Photograph 7: W-35

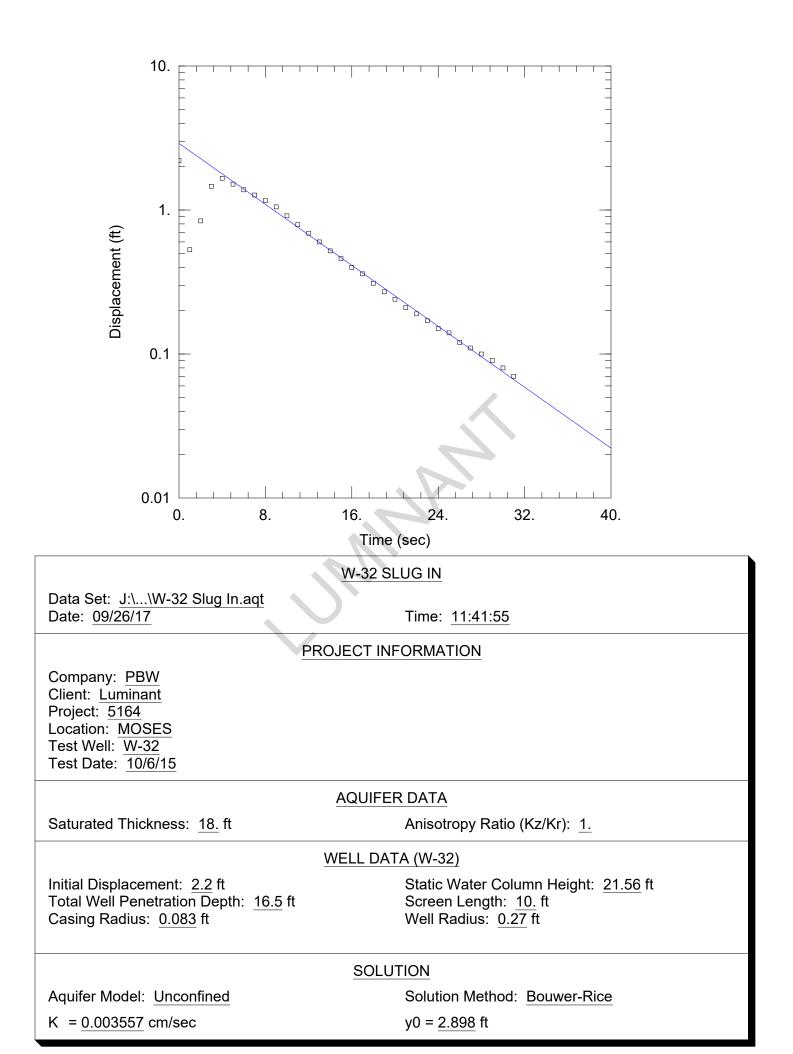

Appendix C


Groundwater Potentiometric Surface Maps









Appendix D

Aquifer Test Data

Data Set: J:\5164 - Luminant CCR GW Monitoring\5164-C_Monticello\Slug Tests\Monticello Slug Tests\Aqtesolv Fi Title: W-32 Slug In Date: 09/26/17 Time: 11:42:21

PROJECT INFORMATION

Company: PBW Client: Luminant Project: 5164 Location: MOSES Test Date: 10/6/15 Test Well: W-32

AQUIFER DATA

Saturated Thickness: 18. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

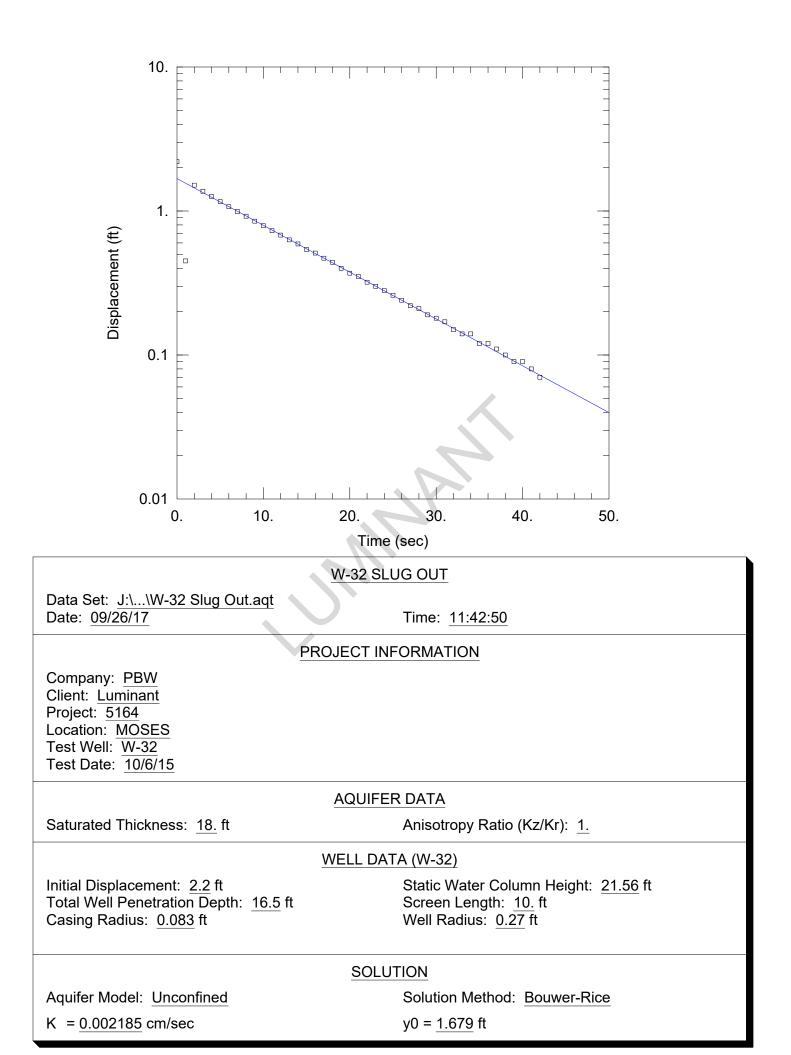
Test Well: W-32

X Location: 0. ft Y Location: 0. ft

Initial Displacement: 2.2 ft Static Water Column Height: 21.56 ft Casing Radius: 0.083 ft Well Radius: 0.27 ft Well Skin Radius: 0.27 ft Screen Length: 10. ft Total Well Penetration Depth: 16.5 ft

No. of Observations: 31

Observation Data				
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)	
1.	0.53	17.	0.36	
2.	0.84	18.	0.31	
3.	1.46	19.	0.27	
	1.66	20.	0.24	
5	1.51	21.	0.21	
4. 5. 6.	1.38	22.	0.19	
7	1 27	23.	0 17	
8.	1.16	24.	0.15	
9.	1.05	25	0.14	
10.	0.91	25. 26.	0.14	
10.	0.79	27.	0.12	
12.	0.69	27.	0.1	
13.	0.6	28. 29.	0.09	
	0.0	29.	0.09	
14.	0.52	30.	0.08	
15.	0.46	31.	0.07	
16.	0.4			


SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.782

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter Estimate

Data Set: J:\5164 - Luminant CCR GW Monitoring\5164-C_Monticello\Slug Tests\Monticello Slug Tests\Aqtesolv Fi Title: W-32 Slug Out Date: 09/26/17 Time: 11:43:03

PROJECT INFORMATION

Company: PBW Client: Luminant Project: 5164 Location: MOSES Test Date: 10/6/15 Test Well: W-32

AQUIFER DATA

Saturated Thickness: 18. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: W-32

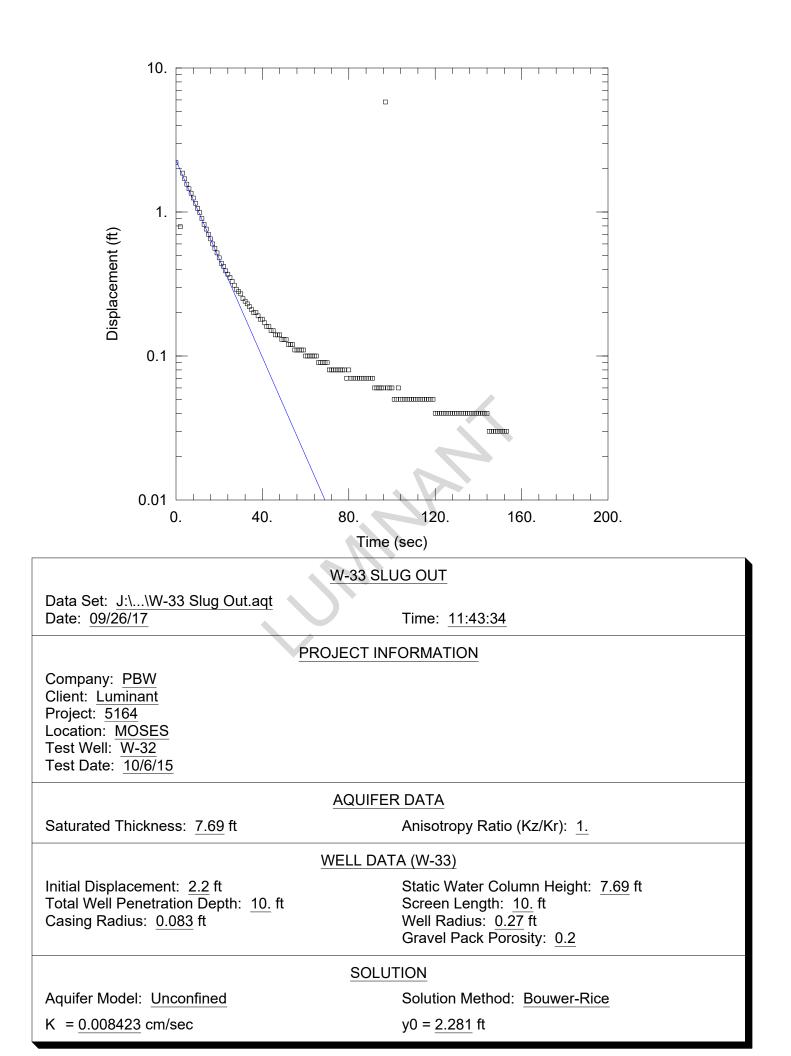
X Location: 0. ft Y Location: 0. ft

Initial Displacement: 2.2 ft Static Water Column Height: 21.56 ft Casing Radius: 0.083 ft Well Radius: 0.27 ft Well Skin Radius: 0.27 ft Screen Length: 10. ft Total Well Penetration Depth: 16.5 ft

No. of Observations: 42

:)
·/

SOLUTION


Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.782

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
——K	0.002185	cm/sec
y0	1.679	ft

 $T = K^*b = 1.199 \text{ cm}^2/\text{sec}$

Data Set: J:\5164 - Luminant CCR GW Monitoring\5164-C_Monticello\Slug Tests\Monticello Slug Tests\Aqtesolv Fi Title: W-33 Slug Out Date: 09/26/17 Time: 11:44:01

PROJECT INFORMATION

Company: PBW Client: Luminant Project: 5164 Location: MOSES Test Date: 10/6/15 Test Well: W-32

AQUIFER DATA

Saturated Thickness: 7.69 ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: W-33

X Location: 0. ft Y Location: 0. ft

Initial Displacement: 2.2 ft Static Water Column Height: 7.69 ft Casing Radius: 0.083 ft Well Radius: 0.27 ft Well Skin Radius: 0.27 ft Screen Length: 10. ft Total Well Penetration Depth: 10. ft Corrected Casing Radius (Bouwer-Rice Method): 0.1417 ft Gravel Pack Porosity: 0.2

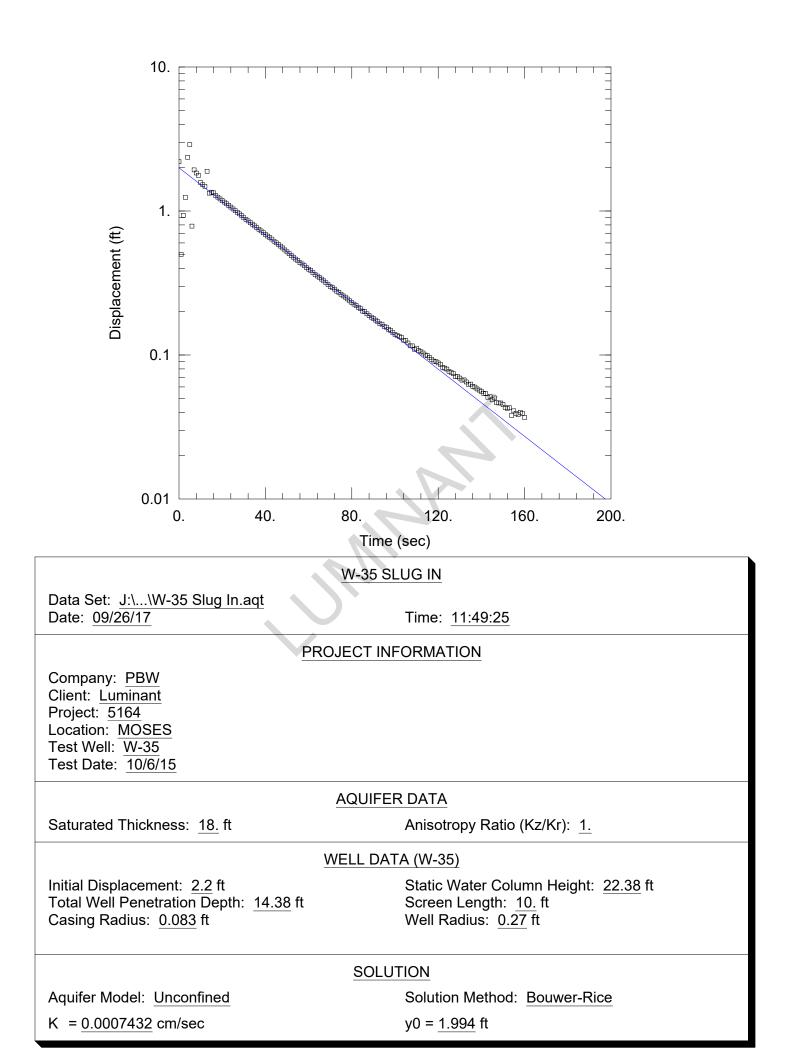
No. of Observations: 154

Observation Data			
Time (sec)	Displacement (ft)	Time (sec)	Displacement (ft)
0. 1	-0.08	77. 78.	0.08
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	0.79	79.	0.07
3.	1.86	80.	0.08
4.	1.7	81. 82.	0.07
5. 6	1.56 1.45	02. 83	0.07
0. 7.	1.35	83. 84.	0.07 0.07
8.	1.25	85. 86.	0.07
9.	1.15	86.	0.07
10.	1.06 0.99	87. 88.	0.07 0.07
12	0.9	89.	0.07
12. 13.	0.82	90.	0.07
14	0.76	91.	0.07
15. 16. 17.	0.7	92.	0.06
10. 17	0.05	93. 94	0.06 0.06
18.	0.65 0.6 0.56	93. 94. 95.	0.06
19.	0.52	96.	0.06
20. 21.	0.48	97.	5.8
21. 22.	0.44 0.42	98. 99.	0.06 0.06
23.	0.39	100.	0.06
24.	0.37	101.	0.05
25.	0.35	102.	0.05
26.	0.33	103.	0.06

$\frac{\text{Time (sec)}}{27.}$ 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70.	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\ 0.31\\ 0.29\\ 0.28\\ 0.27\\ 0.25\\ 0.24\\ 0.23\\ 0.22\\ 0.21\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.19\\ 0.18\\ 0.19\\ 0.18\\ 0.17\\ 0.16\\ 0.16\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.14\\ 0.14\\ 0.14\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.11\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.1\\ 0.$	Time (sec) 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147	$\begin{array}{c} \underline{\text{Displacement (ft)}}\\ 0.05\\ 0.04\\ 0.03$
69. 70. 71. 72. 73. 74. 75. 76.	0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08	146. 147. 148. 149. 150. 151. 152. 153.	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.748


VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.008423	cm/sec
y0	2.281	ft

$T = K^*b = 1.974 \text{ cm}^2/\text{sec}$

UNNIN I

Data Set: J:\5164 - Luminant CCR GW Monitoring\5164-C_Monticello\Slug Tests\Monticello Slug Tests\Aqtesolv Fi Title: W-35 Slug In Date: 09/26/17 Time: 11:44:39

PROJECT INFORMATION

Company: PBW Client: Luminant Project: 5164 Location: MOSES Test Date: 10/6/15 Test Well: W-35

AQUIFER DATA

Saturated Thickness: 18. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: W-35

X Location: 0. ft Y Location: 0. ft

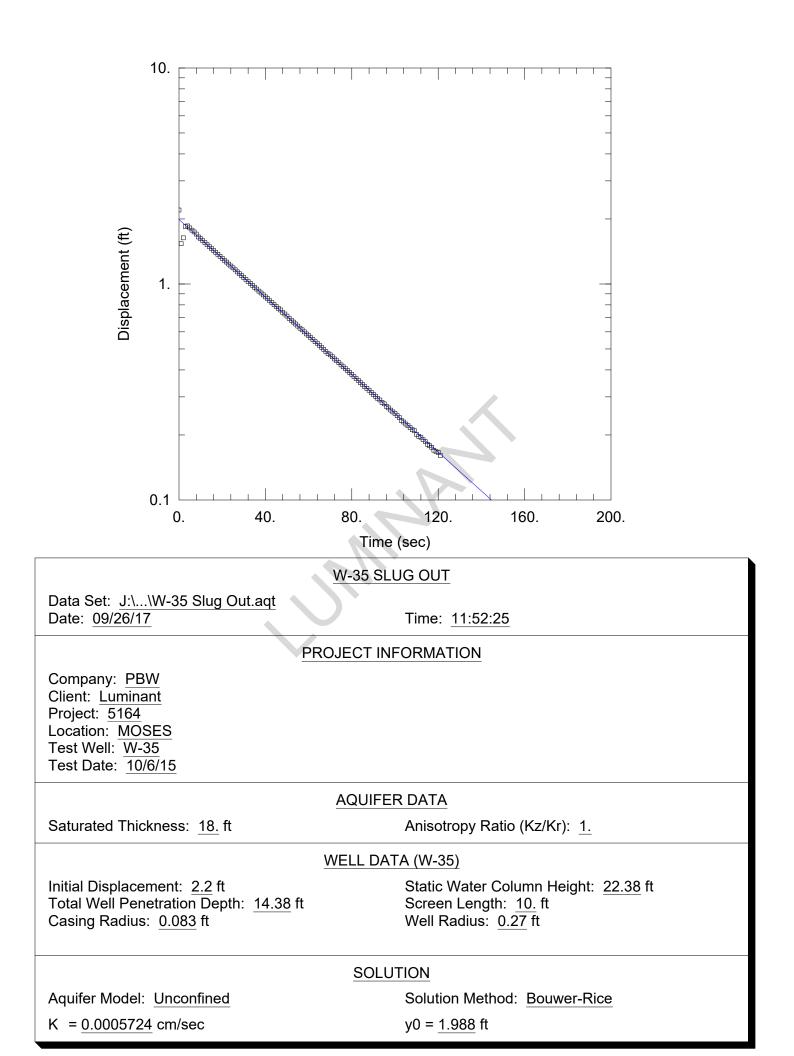
Initial Displacement: 2.2 ft Static Water Column Height: 22.38 ft Casing Radius: 0.083 ft Well Radius: 0.27 ft Well Skin Radius: 0.27 ft Screen Length: 10. ft Total Well Penetration Depth: 14.38 ft

No. of Observations: 160

	Observation		
<u>Time (sec)</u>	Displacement (ft)	Time (sec)	Displacement (ft)
1. 2	0.4999 0.9332	81.	0.2254 0.2206
<u>2</u> . 3.	1.24	82. 83.	0.2146
4.	2.357	84	0.2097
5.	2.894	85.	0.2017
6. 7	0.7846 1.928	85. 86. 87.	0.1997 0.193
7. 8	1.835	88.	0.188
2. 3. 4. 5. 6. 7. 8. 9. 10.	1.765	89.	0.183
10.	1,573	90.	0.179
11. 12.	1.52 1.483	91. 92.	0.1746 0.1701
13.	1.885	93.	0.1645
14.	1.329	94.	0.1635
15.	1.35	95.	0.1578
16. 17.	1.336 1.279	96. 97.	0.156 0.1506
18.	1.247	98.	0.1478
19.	1.212	99.	0.1429
20.	1.18	100.	0.1389
21. 22	1.152 1.122	101. 102.	0.1369 0.1345
22. 23.	1.092	103.	0.1322
24.	1.063	104.	0.1267
25.	1.033	105.	0.1262
26. 27.	1.006 0.9786	106. 107.	0.121 0.1158
28.	0.9549	108.	0.1156
29.	0.9264	109.	0.1096

$\frac{\text{Time (sec)}}{30.}$ $31.$ $32.$ $33.$ $34.$ $35.$ $36.$ $37.$ $38.$ $39.$ $40.$ $41.$ $42.$ $43.$ $44.$ $45.$ $46.$ $47.$ $48.$ $49.$ $50.$ $51.$ $52.$ $53.$ $54.$ $55.$ $56.$ $57.$ $58.$ $59.$ $60.$ $61.$ $62.$ $63.$ $64.$ $65.$ $66.$ $67.$ $68.$ $69.$ $70.$ $71.$ $72.$ $73.$ $74.$ $75.$ $76.$ $77.$	$\begin{array}{c} \underline{\text{Displacement (ft)}}\\ 0.897\\ 0.875\\ 0.8531\\ 0.8306\\ 0.8094\\ 0.7878\\ 0.7659\\ 0.7462\\ 0.727\\ 0.7061\\ 0.6698\\ 0.653\\ 0.6698\\ 0.653\\ 0.6381\\ 0.6172\\ 0.6008\\ 0.5857\\ 0.5699\\ 0.5532\\ 0.5358\\ 0.52\\ 0.5055\\ 0.4898\\ 0.4776\\ 0.4631\\ 0.4523\\ 0.4898\\ 0.4776\\ 0.4631\\ 0.4523\\ 0.4283\\ 0.4179\\ 0.4033\\ 0.3943\\ 0.3861\\ 0.373\\ 0.3623\\ 0.3534\\ 0.3457\\ 0.3365\\ 0.327\\ 0.3173\\ 0.308\\ 0.2992\\ 0.2939\\ 0.2862\\ 0.2772\\ 0.2721\\ 0.2641\\ 0.2573\\ 0.2521\\ 0.2521\\ 0.2521\\ 0.2521\\ 0.2521\\ 0.2521\\ 0.2521\\ 0.8306\\ $	Time (sec) 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157.	$\begin{array}{c} \underline{\text{Displacement (ft)}}\\ 0.1114\\ 0.1069\\ 0.1053\\ 0.1032\\ 0.0999\\ 0.0988\\ 0.0961\\ 0.093\\ 0.0907\\ 0.0897\\ 0.0897\\ 0.088\\ 0.086\\ 0.0822\\ 0.081\\ 0.0798\\ 0.077\\ 0.0757\\ 0.0757\\ 0.0743\\ 0.0706\\ 0.0708\\ 0.0691\\ 0.0669\\ 0.0691\\ 0.0669\\ 0.0671\\ 0.0669\\ 0.0625\\ 0.0625\\ 0.0627\\ 0.0605\\ 0.0598\\ 0.0581\\ 0.0598\\ 0.0581\\ 0.0598\\ 0.0581\\ 0.0598\\ 0.0581\\ 0.057\\ 0.0558\\ 0.0542\\ 0.0539\\ 0.0558\\ 0.0542\\ 0.0539\\ 0.0508\\ 0.0515\\ 0.0488\\ 0.0503\\ 0.0515\\ 0.0488\\ 0.0503\\ 0.0515\\ 0.0488\\ 0.0503\\ 0.0466\\ 0.0464\\ 0.0464\\ 0.0464\\ 0.0464\\ 0.0453\\ 0.0425\\ 0.043\\ 0.038\\ 0.038\\ 0.038\\ 0.0393\\ 0.0385\\ \end{array}$
76.	0.2573	156.	0.0393

SOLUTION


Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.638

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
— K	0.0007432	cm/sec
y0	1.994	ft

 $T = K^*b = 0.4077 \text{ cm}^2/\text{sec}$

Data Set: J:\5164 - Luminant CCR GW Monitoring\5164-C_Monticello\Slug Tests\Monticello Slug Tests\Aqtesolv Fi Title: W-35 Slug Out Date: 09/26/17 Time: 11:52:48

PROJECT INFORMATION

Company: PBW Client: Luminant Project: 5164 Location: MOSES Test Date: 10/6/15 Test Well: W-35

AQUIFER DATA

Saturated Thickness: 18. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Test Well: W-35

X Location: 0. ft Y Location: 0. ft

Initial Displacement: 2.2 ft Static Water Column Height: 22.38 ft Casing Radius: 0.083 ft Well Radius: 0.27 ft Well Skin Radius: 0.27 ft Screen Length: 10. ft Total Well Penetration Depth: 14.38 ft

No. of Observations: 121

	Observation		
<u>Time (sec)</u>	Displacement (ft)	Time (sec)	Displacement (ft)
1.	1.537	62.	0.5529
<u>Z</u> . 3	1.634 1.841	63. 64.	0.5407 0.532
3. 4	1.857	65.	0.52
5	1.817	66.	0.5091
6.	1.774	67.	0.4981
2. 3. 4. 5. 6. 7. 8. 9. 10.	1.742	68.	0.4862
8.	1.702	<u>69</u> .	0.4765
9.	1.651	70.	0.4697
10. 11.	1.62 1.587	71. 72.	0.46 0.4496
12.	1.553	73.	0.4490
13.	1.522	74.	0.4319
14.	1.489	75.	0.4221
15.	1.46	76.	0.4134
<u>16</u> .	1.43	<u>77</u> .	0.4061
17.	1.401	78.	0.3974
18. 19.	1.371 1.343	79.	0.3891 0.3817
20.	1.343	80. 81.	0.3723
21.	1.288	82.	0.3649
22. 23.	1.263	83.	0.3583
23.	1.236	84.	0.3491
24.	1.211	85.	0.3423
25.	1.187	86.	0.3344
26. 27.	1.162 1.137	87. 88.	0.3288 0.322
28.	1.115	89.	0.3148
29.	1.093	90.	0.3082

Time (sec) 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\ 1.069\\ 1.049\\ 1.026\\ 1.007\\ 0.986\\ 0.9649\\ 0.9476\\ 0.9265\\ 0.9085\\ 0.8898\\ 0.8713\\ 0.855\\ 0.8357\\ 0.8197\\ 0.802\\ 0.7868\\ 0.7708\\ 0.7708\\ 0.7575\\ 0.7383\\ 0.7258\\ 0.7101\\ 0.6927\\ 0.679\\ 0.666\\ 0.6525\\ 0.6385\\ 0.6244\\ 0.6134\\ 0.6001\\ 0.5871\\ 0.5765\end{array}$	Time (sec) 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121.	$\begin{array}{r} \underline{\text{Displacement (ft)}}\\ 0.3021\\ 0.2949\\ 0.2903\\ 0.2828\\ 0.2785\\ 0.2714\\ 0.2667\\ 0.2607\\ 0.2557\\ 0.2557\\ 0.2517\\ 0.2456\\ 0.2409\\ 0.2334\\ 0.2296\\ 0.2248\\ 0.2209\\ 0.2248\\ 0.2209\\ 0.216\\ 0.2114\\ 0.209\\ 0.216\\ 0.2114\\ 0.209\\ 0.209\\ 0.209\\ 0.197\\ 0.1952\\ 0.1899\\ 0.1865\\ 0.1811\\ 0.1782\\ 0.1753\\ 0.17\\ 0.1661\\ 0.1606\end{array}$
61.	0.5634		011000

SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.638

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
— K —	0.0005724	cm/sec
y0	1.988	ft

 $T = K^*b = 0.3141 \text{ cm}^2/\text{sec}$